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Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
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Vaswani et al. (2017)

https://www.aclweb.org/anthology/P19-1452/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.html


Pre-training & fine-tuning

• Transfer learning aims to re-use knowledge gained while solving 
one problem when solving the next problem. 
reduce the need for training data 

• In contemporary NLP, transfer learning is usually implemented 
through pre-training and fine-tuning.

Model trained on task A Model to be trained on task B
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GPT-3 example output

Model prompt  
(human-written)

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously 
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact 
that the unicorns spoke perfect English.

Model completion 
(machine-written)

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, 
silver-white unicorns were previously unknown to science. The scientist named the population, 
after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white unicorns were 
previously unknown to science. Now, after almost two centuries, the mystery of what sparked this 
odd phenomenon is finally solved. Dr. Jorge Pérez, an evolutionary biologist from the University of 
La Paz, and several companions, were exploring the Andes Mountains when they found a small 
valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a 
natural fountain, surrounded by two peaks of rock and silver snow. 
Pérez and the others then ventured further into the valley. “By the time we reached the top of one 
peak, the water looked blue, with some crystals on top,” said Pérez. 
Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from 
the air without having to move too much to see them – they were so close they could touch 
their horns. […]

OpenAI Blog (2019)

https://openai.com/blog/better-language-models/


Larger and larger models, more and more data

GPT-1 GPT-2 GPT-3

Number of dimensions 768 1,600 12,288

Number of layers 12 48 96

Trainable parameters 0.117 B 1.542 B 175 B

Training data size (tokens) 800 M (40 GB text) 499 B

Radford et al. (2018), Radford et al. (2019), Brown et al. (2020)

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


Large language models are zero-shot learners

Sentiment classification 

Tweet: I hate it when my battery dies.  
Sentiment: Negative 
Tweet: My day has been great!  
Sentiment: Positive 
Tweet: This music video was incredible!  
Sentiment: Positive

Machine translation 

Translate English to French: 
sea otter => loutre de mer 
peppermint => menthe poivrée 
plush giraffe => girafe en peluche 
cheese => fromage

black text provided by the user, red text generated by GPT-3



Stochastic Parrots 🦜 – Are they worth it?

How big is too big? What are the possible risks associated with [large pre-
trained language models] and what paths are available for mitigating those 
risks? We provide recommendations including weighing the 
environmental and financial costs first, investing resources into curating 
and carefully documenting datasets rather than ingesting everything on 
the web, carrying out pre-development exercises evaluating how the 
planned approach fits into research and development goals and supports 
stakeholder values, and encouraging research directions beyond ever larger 
language models.

Bender et al. (2021)

https://arxiv.org/abs/2107.03374


Overview of this presentation

Question:  What do neural language models learn about language, 
and how can we even know? 

• Method 1: Probing.  Using diagnostic classifiers to draw 
conclusions about linguistic structure encoded in model 
representations. (But can we, really?) 

• Method 2: Explanations.  Letting models generate free-form 
explanations that tell us something about how a model arrived at 
a prediction. (But do they, really?)



Publications

• Jenny Kunz and Marco Kuhlmann. Classifier Probes May Just Learn from Linear 
Context Features. COLING 2020. 

• Jenny Kunz and Marco Kuhlmann. Test Harder Than You Train: Probing with 
Extrapolation Splits. BlackboxNLP 2021. 

• Jenny Kunz and Marco Kuhlmann. Where Does Linguistic Information Emerge in 
Neural Language Models? Measuring Gains and Contributions Across Layers. 
COLING 2022. 

• Jenny Kunz, Martin Jirénius, Oskar Holmström, and Marco Kuhlmann. Human 
Ratings Do Not Reflect Downstream Utility: A Study of Free-Text Explanations for 
Model Predictions. Accepted to BlackboxNLP 2022.



Insights from probing



Probing for linguistic structure

• A probe is a classifier trained on a task designed with the 
intention of revealing what information is present in a model. 
often a simple linear layer 

• The diagnostic task uses data in the form of pairs (𝑥, 𝑦) where  
𝑥 is a representation extracted from the model and 𝑦 is a label. 
Example: BERT representation at some layer 𝑘 

• Basic assumption: The probe can only learn the task well if the 
necessary information is already encoded in the representation.



Simple probing tasks

Given a word, what is its part-of-speech (POS) tag?

Given two words, is one the syntactic head of the other?

Given a word, what is the position of its syntactic head?

Given a word, is its POS tag the most frequent tag?

PROPN VERB ADJ NOUN

likes fresh parsnipsKim

Kunz and Kuhlmann (2020); Kunz and Kuhlmann (2022)

http://10.18653/v1/2020.coling-main.450
https://aclanthology.org/2022.coling-1.413


The pipeline hypothesis
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https://www.aclweb.org/anthology/P19-1452/


Methodological questions

• What accuracy do we take as sufficient evidence to conclude that 
a model has ‘learned a task’? What are suitable baselines? 

• When a model ‘learns a task’, does that really mean that it 
encodes linguistic information? 

• What is a suitable learning paradigm for asking these questions? 
What are suitable metrics?

Kunz and Kuhlmann (2020); Kunz and Kuhlmann (2021); Kunz and Kuhlmann (2022)

http://10.18653/v1/2020.coling-main.450
http://dx.doi.org/10.18653/v1/2021.blackboxnlp-1.2
https://aclanthology.org/2022.coling-1.413


BERT is very good at predicting neighbouring words
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Figure 1: Neighboring word identity probes: Results for BERT

readability of the plot. For the immediate neighbors, there is a performance gap especially in the middle
layers, and we therefore report both accuracies separately.

While the prediction accuracy for all words but the center word is only between 6% and 12% in layer 0,
it increases in the next layers, suggesting that the word representations available in these layers have
memorized configurations of neighboring words in the training set. The accuracy for the next word tops at
62.3% in layer 3, while that for the previous word reaches its maximum in layer 2 with 51.2%. For words
two steps steps away, the top result is in layer 6 with 24.2%, and for words three steps away it is 14.7% in
layer 5. For higher layers, the performance at all o�sets is dropping again. The word itself can be best
recovered from layer 0, and accuracy drops steadily until layer 11.

Our results clearly show that the linear context of a word can be recovered from the word representation
to a substantial extent, especially when it comes to the word’s direct neighbors. When comparing results to
the baseline accuracies for layer 0 (representing an uncontextualized language model) and to the accuracies
for recovering the word itself (as an upper bound), we see that, although the encoding of the linear context
is clearly not a lossless compression, it is still quite informative. Not surprisingly, the context information
is the noisier the further away the neighboring words are; but even for words three steps away (: = ±3)
the word representations in higher layers are still clearly more predictive than the representation in the
uncontextualized layer—for example, we see 14.7% accuracy in layer 4, compared to 5.9% in layer 0.

Clark et al. (2019) find that one of BERT’s attention heads in layer 3 specifically attends to the next
token. The results in Figure 1 are consistent with this observation, as in layer 3 we see a clear peak in the
accuracies for the prediction of the next token.

3.2.2 Results: ELMo
The results for ELMo can be found in Table 1. ELMo always has the highest performance in layer 1,
except for the prediction of the word itself, which is best predicted by the word embedding layer. Layer 2
seems to correspond to BERT’s late layers in that the performance drops for all context words.

ELMo’s best layer generally underperforms BERT’s best layers in predicting neighboring words. These
results raise the question of whether BERT’s superior performance e.g. in syntax probes may be due not to
its better modeling of linguistic structure, but due to its better modeling of the exact context. Especially

self �1 +1 ±2 ±3
BERT (best) 84.786 51.180 62.322 24.188 14.685
Embedding 84.971 11.294 12.083 7.594 5.634
Layer 1 81.458 43.851 43.699 21.494 12.784
Layer 2 72.933 34.865 33.711 15.920 10.086
Weighted Sum 81.261 38.552 37.650 17.496 10.395

Table 1: ELMo Results: Word Identity

Vocabulary size = 8,282

The probe is trained to predict the identity of the word at position ± k.



A null hypothesis for probing experiments

• The word-level representations learned by BERT contain precise 
information about the exact linear neighbourhood of the word. 

• Because of this, we argue that any study claiming that a model 
encodes linguistic structure should be able to reject the … 

• Context-only Hypothesis:  The only information that the 
classifier probe uses to learn the diagnostic task is information 
about the identities of the neighbouring words of the target word.



Methodological questions

• What accuracy do we take as sufficient evidence to conclude that 
a model has ‘learned a task’? What are suitable baselines? 

• When a model ‘learns a task’, does that really mean that it 
encodes linguistic information? 

• What is a suitable learning paradigm for asking these questions? 
What are suitable metrics?

Kunz and Kuhlmann (2020); Kunz and Kuhlmann (2021); Kunz and Kuhlmann (2022)

http://10.18653/v1/2020.coling-main.450
http://dx.doi.org/10.18653/v1/2021.blackboxnlp-1.2
https://aclanthology.org/2022.coling-1.413


Insights from explanations



Asking language models to explain their predictions

Hypothesis:  
A woman is walking in a park.

Premise:  
A woman in a teal apron 
prepares a meal at a 
restaurant.

Label:  
contradiction

Human explanation:  
A restaurant is not a park.

Generated explanation:  
The woman cannot be 
walking and preparing a meal 
at the same time.

Example from e-SNLI; Camburu et al. (2018)

https://proceedings.neurips.cc/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf


Evaluation of free-form explanations

How similar are generated explanations to human explanations? 

• surface-level similarity (BLEU, ROUGE, BERTScore) 

• similarity to human reasoning 

How faithful are generated explanations to model behaviour? 

• high feature agreement between labels and explanations 

• correlation between noise robustness of labels, explanations

Papineni et al. (2002); Lin (2004); Zhang et al. (2020); Hase et al. (2020); Wiegreffe et al. (2021)

https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/2020.findings-emnlp.390
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper-round1.pdf


Rationale-augmented model architectures
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https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper-round1.pdf


Rationale-enriched pipelines

I R O

• pro: easier to study than self-rationalizing models; higher 
performance than the R → O component of pipeline models 

• con: not inherently faithful, as a causal path from input  
to output remains open
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http://dx.doi.org/10.18653/v1/P19-1487


Models

• Generator:  GPT-2 fine-tuned on the task-specific data set.  
GPT-ST: language modelling, GPT-MT: + label prediction 

• Classifier:  BERT-base fine-tuned on the task-specific data set. 
Six-different setups depending on the type of explanations.  

•

Statement: Premise Statement: Hypothesis Explanation: Explanation

[CLS] Premise [SEP] Hypothesis [SEP] Explanation [SEP]

Kunz et al. (2022, forthcoming)



Experimental setups

Trained with Tested with

1   None – –

2   Gold Gold explanations Gold explanations

3   ST −ft Gold explanations GPT-ST

4   ST +ft GPT-ST GPT-ST

5   MT −ft Gold explanations GPT-MT

6   MT +ft GPT-MT GPT-MT



Human evaluation

If you disagree with the label or find the example
to be non-sense: Flag the example with N/A.

Step 1: Look only at e internally:

• Is e a well-formed sentence? (e is grammat-
ical and structurally sensible.)

• Is the content of e factually correct? (e it-
self is a true statement about the real world.
e is factually and logically correct.)

Step 2: Look at e and the label:

• Does e support the label? (Looking at e
alone, it is reasonable that the label is cor-
rect.)

Step 3: Use all available context:

• Does e provide a valid reasoning path for
the label? (e convincingly explains how to
get from the context to the label.)

• Does e add new information? (Rather than
re-combining information from the context,
e comes up with new information.)

B Anecdotical Examples for Observed
Characteristics

In this appendix section we provide further ex-
amples for four phenomena mentioned in this pa-
per that raters noticed during the human evalua-
tion. These phenomena were not systematically
reviewed at evaluation time but are anecdotal ob-
servations.

B.1 Hallucinations in GPT-MT
The following five examples from GPT-MT
include novel, “hallucinated” information that has
no connection to the question or answer option.

Q: When old conservative people observe a
changing society, what do the experience?
A: acceptance
Label: refute
GPT-MT: The experience of dying is a feeling

Q: Where can I put a coin to stop my car
from being towed?
A: piggy bank
Label: refute
GPT-MT: A person can put a coin in a cowgy
bank to stop his car from being washed from the

water.

Q: After I urinate and flush the toilet and
wash my hands, what should I do next?
A: zip pants
Label: refute
GPT-MT: A person should not put bag under shirt.

Q: The stud bull was brought in to breed
with the prize winning what?
A: female
Label: refute
GPT-MT: Cats are not called horses

Q: Who might wear dark glasses indoors?
A: ray charles
Label: refute
GPT-MT: A person might wear dark glasses in a
ring in the house.

B.2 Template-like explanations in e-SNLI

In the following we provide six examples from
e-SNLI, two for each label, where the explanations
follow a clear template that is consistently followed
by all explanation models.

Premise: A dog biting a man’s rear
Hypothesis: An animal is biting a man.
Label: entailment
GPT-ST: A dog is an animal.
GPT-MT: A dog is an animal.
Gold: A dog is an animal.

Premise: A group of men playing music,
the man holding a guitar is talking to a man with
drums.
Hypothesis: A band is playing music.
Label: entailment
GPT-ST: A group of men playing music is a band.
GPT-MT: A group of men playing music is a
band.
Gold: A group playing music together is know as
a band.

Premise: Man holding torch of fire.
Hypothesis: The fire is large.
Label: neutral
GPT-ST: Not all fires are large.
GPT-MT: The fire is not necessarily large.
Gold: Not all the fires are large.

• To assess qualitative properties of the 
generated explanations, we conduct a 
human evaluation over 200 samples. 

• Each sample is rated yes/no by three 
persons familiar with the task. 

• We report the average score across 
annotators and Krippendorff ’s 𝛼.



Main findings

• Surface similarity, semantic similarity and human ratings do not 
correlate well with classification accuracy. 

• Fine-tuning on generated explanations is crucial for achieving 
high classification accuracy. 

• Existing data sets differ greatly with respect to the quality and 
uniformity of explanations.

Kunz et al. (2022, forthcoming)



Surface similarity and semantic similarity

Data ST MT

ECQA 0.311 0.250

e-SNLI 0.399 0.401

Data ST MT Gold

ECQA 7,946 4,436 11,033

e-SNLI 9,398 9,346 14,935

Semantic similarity as measured  
by BERTScores (F1) 

We see the same trends as in the  
results about surface similarity.

Vocabulary size for generated explanations  
and gold-standard explanations. 

For e-SNLI, explanations generated by ST and MT  
are similar. Differences are larger for ECQA.



Classification results

Data set None Gold ST −ft ST +ft MT −ft MT +ft

ECQA 0.378 0.906 0.514 0.631 0.489 0.634

e-SNLI 0.898 0.980 0.836 0.861 0.836 0.861

Classification accuracy measured in terms of macro-averaged F1 scores 

Using fine-tuned explanations yields higher scores. ST and MT show similar performance on both data sets.



Results of the human evaluation

Well-formed Support Correctness Validity Novelty

ECQA gold 0.603 (+0.22) 0.682 (+0.13) 0.593 (�0.03) 0.490 (+0.18) 0.173 (+0.20)
ECQA GPT-ST 0.573 (+0.25) 0.513 (+0.45) 0.443 (+0.19) 0.285 (+0.48) 0.126 (+0.28)
ECQA GPT-MT 0.607 (+0.32) 0.320 (+0.43) 0.333 (+0.15) 0.107 (+0.43) 0.211 (+0.23)

e-SNLI gold 0.833 (+0.04) 0.873 (+0.06) 0.860 (+0.08) 0.772 (�0.06) 0.052 (�0.02)
e-SNLI GPT-ST 0.868 (+0.10) 0.807 (+0.57) 0.755 (+0.73) 0.670 (+0.65) 0.018 (+0.26)
e-SNLI GPT-MT 0.830 (+0.24) 0.813 (+0.56) 0.813 (+0.56) 0.688 (+0.54) 0.012 (�0.01)

Table 6: Human evaluation: average share of yes answers across all samples that were not flagged as invalid. The
numbers in parentheses show Krippendorf’s ↵ (n = 3, interval from �1 to +1) for inter-rater agreement.

Fine-tuning on generated explanations is cru-
cial Another important finding is the failure of
BERTST and BERTMT when encountering gener-
ated explanations in ECQA, which shows that our
generator models do not catch the relevant seman-
tic aspects sufficiently well for the classifier to rely
on them. However, after fine-tuning with generated
explanations, the BERT classifier can improve over
the baseline without access to explanations. This
shows that the model can still profit from the im-
perfect explanations if it learns to handle their limi-
tations better. Our ablation with a model trained on
generated and evaluated gold explanations suggests
that it is not surface differences that make the trans-
fer hard: The ablation model can in fact handle
the gold explanations quite well, performing even
better than on generated explanations. The fact
that it still performs much worse than BERTgold on
gold explanations shows that the model is far from
perfect in identifying reliable information in the
explanations; however, it is able to differentiate to
some extent.

In previous work, Rajani et al. (2019) use a simi-
lar model consisting of GPT-2 and BERT, and suc-
ceed with gold-explanation training and generated-
explanation testing for CoS-E. One reason for the
contradictory results could be a more sophisticated
optimization of their model, but we find it worth
discussing that the success does not necessarily
come by default. Another hypothesis is that the
cause is the (reportedly) low-quality annotations
in CoS-E (Narang et al., 2020) having a similar
noise-adding effect as the generated explanations,
and therefore allow the model to transfer.

e-SNLI is easy, ECQA problematic to explain
On e-SNLI, all models get higher scores in all met-
rics than on ECQA. The only exception is novelty
in the human evaluation: Novel information is not
necessary to explain e-SNLI instances; it is suffi-
cient to re-combine parts of premise and hypothesis.

This is commonly done in a template-like manner:

– [Part of premise] is [part of hypothesis] for the
entailment label,

– Not all [part of premise] are [part of hypothesis]
for neutral, and

– [Subject] cannot [part of premise] and [part of
hypothesis] at the same time for contradiction.

For full examples containing these patterns, we
refer to Appendix B.2. The template-like explana-
tions in e-SNLI have also been noted by Camburu
et al. (2018) and Brahman et al. (2021). Such obser-
vations could raise the question if templates could
be a more appropriate form of explanation for this
data set, as they would improve clarity and reliabil-
ity. Wiegreffe and Marasovic (2021) review expla-
nation data sets and question the popular perception
that template-like explanations are generally dis-
missed as uninformative. The authors suggest to
instead embrace naturally occurring structures.

ECQA explanations rarely follow simple pat-
terns and more often include external information.
The low validity scores even for the gold explana-
tions show that the data set is rather hard to explain.
Our annotators noted that “incorrect” answer op-
tions in ECQA are not generally implausible but
often just less likely than the “correct” option. This
makes it hard to write explanations that do not
explicitly consider the correct answer option in a
contrastive manner (arguing why it is more likely
than the current candidate). Examples are given in
Appendix B.3. ECQA contains a notable number
of uninformative explanations for the refute label
both in the gold and the generated explanations, e.g.
[Answer] is not a correct option (see Appendix B.4
for examples). This is possibly a result of annota-
tors not being able to formulate satisfying reasons
why the answer option is incorrect. ECQA also has
a large amount of ungrammatical and low-quality
annotations, which affects the generation models
negatively.

For ECQA, annotators have a preference for ST. For e-SNLI, there is a slight preference for MT.



Results of the human evaluation

Well-formed Support Correctness Validity Novelty

ECQA gold 0.603 (+0.22) 0.682 (+0.13) 0.593 (�0.03) 0.490 (+0.18) 0.173 (+0.20)
ECQA GPT-ST 0.573 (+0.25) 0.513 (+0.45) 0.443 (+0.19) 0.285 (+0.48) 0.126 (+0.28)
ECQA GPT-MT 0.607 (+0.32) 0.320 (+0.43) 0.333 (+0.15) 0.107 (+0.43) 0.211 (+0.23)
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e-SNLI GPT-MT 0.830 (+0.24) 0.813 (+0.56) 0.813 (+0.56) 0.688 (+0.54) 0.012 (�0.01)

Table 6: Human evaluation: average share of yes answers across all samples that were not flagged as invalid. The
numbers in parentheses show Krippendorf’s ↵ (n = 3, interval from �1 to +1) for inter-rater agreement.

Fine-tuning on generated explanations is cru-
cial Another important finding is the failure of
BERTST and BERTMT when encountering gener-
ated explanations in ECQA, which shows that our
generator models do not catch the relevant seman-
tic aspects sufficiently well for the classifier to rely
on them. However, after fine-tuning with generated
explanations, the BERT classifier can improve over
the baseline without access to explanations. This
shows that the model can still profit from the im-
perfect explanations if it learns to handle their limi-
tations better. Our ablation with a model trained on
generated and evaluated gold explanations suggests
that it is not surface differences that make the trans-
fer hard: The ablation model can in fact handle
the gold explanations quite well, performing even
better than on generated explanations. The fact
that it still performs much worse than BERTgold on
gold explanations shows that the model is far from
perfect in identifying reliable information in the
explanations; however, it is able to differentiate to
some extent.

In previous work, Rajani et al. (2019) use a simi-
lar model consisting of GPT-2 and BERT, and suc-
ceed with gold-explanation training and generated-
explanation testing for CoS-E. One reason for the
contradictory results could be a more sophisticated
optimization of their model, but we find it worth
discussing that the success does not necessarily
come by default. Another hypothesis is that the
cause is the (reportedly) low-quality annotations
in CoS-E (Narang et al., 2020) having a similar
noise-adding effect as the generated explanations,
and therefore allow the model to transfer.

e-SNLI is easy, ECQA problematic to explain
On e-SNLI, all models get higher scores in all met-
rics than on ECQA. The only exception is novelty
in the human evaluation: Novel information is not
necessary to explain e-SNLI instances; it is suffi-
cient to re-combine parts of premise and hypothesis.

This is commonly done in a template-like manner:

– [Part of premise] is [part of hypothesis] for the
entailment label,

– Not all [part of premise] are [part of hypothesis]
for neutral, and

– [Subject] cannot [part of premise] and [part of
hypothesis] at the same time for contradiction.

For full examples containing these patterns, we
refer to Appendix B.2. The template-like explana-
tions in e-SNLI have also been noted by Camburu
et al. (2018) and Brahman et al. (2021). Such obser-
vations could raise the question if templates could
be a more appropriate form of explanation for this
data set, as they would improve clarity and reliabil-
ity. Wiegreffe and Marasovic (2021) review expla-
nation data sets and question the popular perception
that template-like explanations are generally dis-
missed as uninformative. The authors suggest to
instead embrace naturally occurring structures.

ECQA explanations rarely follow simple pat-
terns and more often include external information.
The low validity scores even for the gold explana-
tions show that the data set is rather hard to explain.
Our annotators noted that “incorrect” answer op-
tions in ECQA are not generally implausible but
often just less likely than the “correct” option. This
makes it hard to write explanations that do not
explicitly consider the correct answer option in a
contrastive manner (arguing why it is more likely
than the current candidate). Examples are given in
Appendix B.3. ECQA contains a notable number
of uninformative explanations for the refute label
both in the gold and the generated explanations, e.g.
[Answer] is not a correct option (see Appendix B.4
for examples). This is possibly a result of annota-
tors not being able to formulate satisfying reasons
why the answer option is incorrect. ECQA also has
a large amount of ungrammatical and low-quality
annotations, which affects the generation models
negatively.

On ECQA, MT adds more novel information. (Most of it is factually incorrect.)



Hallucination may be useful for prediction

Question:  
The archaeologist was 
seeing artifacts that he knew 
were fake, how did he feel? 

Target answer:  
Painful memories 

ST:  
Painful memories  
is not a feeling. 

MT:  
A person who is in fear of 
being embarrassed is called 
a bad person.

high rating

low rating



Results of the human evaluation

Well-formed Support Correctness Validity Novelty

ECQA gold 0.603 (+0.22) 0.682 (+0.13) 0.593 (�0.03) 0.490 (+0.18) 0.173 (+0.20)
ECQA GPT-ST 0.573 (+0.25) 0.513 (+0.45) 0.443 (+0.19) 0.285 (+0.48) 0.126 (+0.28)
ECQA GPT-MT 0.607 (+0.32) 0.320 (+0.43) 0.333 (+0.15) 0.107 (+0.43) 0.211 (+0.23)

e-SNLI gold 0.833 (+0.04) 0.873 (+0.06) 0.860 (+0.08) 0.772 (�0.06) 0.052 (�0.02)
e-SNLI GPT-ST 0.868 (+0.10) 0.807 (+0.57) 0.755 (+0.73) 0.670 (+0.65) 0.018 (+0.26)
e-SNLI GPT-MT 0.830 (+0.24) 0.813 (+0.56) 0.813 (+0.56) 0.688 (+0.54) 0.012 (�0.01)

Table 6: Human evaluation: average share of yes answers across all samples that were not flagged as invalid. The
numbers in parentheses show Krippendorf’s ↵ (n = 3, interval from �1 to +1) for inter-rater agreement.

Fine-tuning on generated explanations is cru-
cial Another important finding is the failure of
BERTST and BERTMT when encountering gener-
ated explanations in ECQA, which shows that our
generator models do not catch the relevant seman-
tic aspects sufficiently well for the classifier to rely
on them. However, after fine-tuning with generated
explanations, the BERT classifier can improve over
the baseline without access to explanations. This
shows that the model can still profit from the im-
perfect explanations if it learns to handle their limi-
tations better. Our ablation with a model trained on
generated and evaluated gold explanations suggests
that it is not surface differences that make the trans-
fer hard: The ablation model can in fact handle
the gold explanations quite well, performing even
better than on generated explanations. The fact
that it still performs much worse than BERTgold on
gold explanations shows that the model is far from
perfect in identifying reliable information in the
explanations; however, it is able to differentiate to
some extent.

In previous work, Rajani et al. (2019) use a simi-
lar model consisting of GPT-2 and BERT, and suc-
ceed with gold-explanation training and generated-
explanation testing for CoS-E. One reason for the
contradictory results could be a more sophisticated
optimization of their model, but we find it worth
discussing that the success does not necessarily
come by default. Another hypothesis is that the
cause is the (reportedly) low-quality annotations
in CoS-E (Narang et al., 2020) having a similar
noise-adding effect as the generated explanations,
and therefore allow the model to transfer.

e-SNLI is easy, ECQA problematic to explain
On e-SNLI, all models get higher scores in all met-
rics than on ECQA. The only exception is novelty
in the human evaluation: Novel information is not
necessary to explain e-SNLI instances; it is suffi-
cient to re-combine parts of premise and hypothesis.

This is commonly done in a template-like manner:

– [Part of premise] is [part of hypothesis] for the
entailment label,

– Not all [part of premise] are [part of hypothesis]
for neutral, and

– [Subject] cannot [part of premise] and [part of
hypothesis] at the same time for contradiction.

For full examples containing these patterns, we
refer to Appendix B.2. The template-like explana-
tions in e-SNLI have also been noted by Camburu
et al. (2018) and Brahman et al. (2021). Such obser-
vations could raise the question if templates could
be a more appropriate form of explanation for this
data set, as they would improve clarity and reliabil-
ity. Wiegreffe and Marasovic (2021) review expla-
nation data sets and question the popular perception
that template-like explanations are generally dis-
missed as uninformative. The authors suggest to
instead embrace naturally occurring structures.

ECQA explanations rarely follow simple pat-
terns and more often include external information.
The low validity scores even for the gold explana-
tions show that the data set is rather hard to explain.
Our annotators noted that “incorrect” answer op-
tions in ECQA are not generally implausible but
often just less likely than the “correct” option. This
makes it hard to write explanations that do not
explicitly consider the correct answer option in a
contrastive manner (arguing why it is more likely
than the current candidate). Examples are given in
Appendix B.3. ECQA contains a notable number
of uninformative explanations for the refute label
both in the gold and the generated explanations, e.g.
[Answer] is not a correct option (see Appendix B.4
for examples). This is possibly a result of annota-
tors not being able to formulate satisfying reasons
why the answer option is incorrect. ECQA also has
a large amount of ungrammatical and low-quality
annotations, which affects the generation models
negatively.

Overall, scores and inter-rater agreement are low, even for gold explanations.



Main findings

• Surface similarity, semantic similarity and human ratings do not 
correlate well with classification accuracy. 

• Fine-tuning on generated explanations is crucial for achieving 
high classification accuracy. 

• Existing data sets differ greatly with respect to the quality and 
uniformity of explanations.

Kunz et al. (2022, forthcoming)



Summary



Main conclusions

• Large language models can produce impressive results, but 
knowing exactly what they have learned is hard. 

• Existing methods are often inconclusive and counter-intuitive. 
There is no comprehensive, well-understood methodology. 
but several interesting ideas, e.g. Voita and Titov (2020) 

• We need to get better at clearly formulating the potential and the 
limitations of different evaluation methods.

http://dx.doi.org/10.18653/v1/2020.emnlp-main.14
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