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'‘Natural language processing from scratch’
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Pre-training & fine-tuning

» Transfer learning aims to re-use knowledge gained while solving
one problem when solving the next problem.

reduce the need for training data

» In contemporary NLP, transfer learning is usually implemented
through pre-training and fine-tuning.
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Model trained on task A Model to be trained on task B
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GPT model architecture
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https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

Model prompt
(human-written)

Model completion
(machine-written)

GPT-3 example output

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously
unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact
that the unicorns spoke perfect English.

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned,
silver-white unicorns were previously unknown to science. The scientist named the population,
after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were
previously unknown to science. Now, after almost two centuries, the mystery of what sparked this
odd phenomenon is finally solved. Dr. Jorge Pérez, an evolutionary biologist from the University of
La Paz, and several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a
natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one
peak, the water looked blue, with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from
the air without having to move too much to see them — they were so close they could touch

their horns. [...]

OpenAl Blog (2019)



https://openai.com/blog/better-language-models/

Larger and larger models, more and more data

GPT-1 GPT-2
Number of dimensions 768 1,600 12,288
Number of layers 12 48 96
Trainable parameters 0.117 B 1.542 B 175 B
Training data size (tokens) 8oo M (40 GB text) 499 B

Radford et al. (2018), Radford et al. (2019), Brown et al. (2020)



https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Large language models are zero-shot learners

Sentiment classification Machine translation

Tweet: | hate it when my battery dies. Translate English to French:
Sentiment: Negative sea otter => loutre de mer
Tweet: My day has been great! peppermint => menthe poivrée

Sentiment: Positive plush giraffe => girafe en peluche

Tweet: This music video was incredible!
Sentiment:

cheese =>

black text provided by the user, red text generated by GPT-3



Stochastic Parrots S — Are they worth it?

How big is too big? What are the possible risks associated with [large pre-
trained language models] and what paths are available for mitigating those
risks? We provide recommendations including weighing the
environmental and financial costs first, investing resources into curating
and carefully documenting datasets rather than ingesting everything on
the web, carrying out pre-development exercises evaluating how the
planned approach fits into research and development goals and supports
stakeholder values, and encouraging research directions beyond ever larger

language models.

Bender et al. (2021)



https://arxiv.org/abs/2107.03374

Overview of this presentat
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Question: What do neural language models learn about language,

and how can we even know?

» Method 1: Probing. Using diagnostic classifiers to draw

conclusions about linguistic structure encoded in model

representations. (But can we, really?)

» Method 2: Explanations. Letting models generate free-form

explanations that tell us somet

ning about how a model arrived at

a prediction. (But do they, real

y?)



Publications

 Jenny Kunz and Marco Kuhlmann. Classifier Probes May Just Learn from Linear
Context Features. COLING 2020.

 Jenny Kunz and Marco Kuhlmann. Test Harder Than You Train: Probing with
Extrapolation Splits. BlackboxNLP 2021.

» Jenny Kunz and Marco Kuhlmann. Where Does Linguistic Information Emerge in
Neural Language Models? Measuring Gains and Contributions Across Layers.
COLING 2022.

 Jenny Kunz, Martin Jirénius, Oskar Holmstrom, and Marco Kuhlmann. Human
Ratings Do Not Reflect Downstream Utility: A Study of Free-Text Explanations for
Model Predictions. Accepted to BlackboxNLP 2022.



Insights from probing



Probing for linguistic structure

A probe is a classifier trained on a task designed with the

intention of revealing what information is present in a model.

often a simple linear layer

The diagnostic task uses data in the form of pairs (x, y) where

x is a representation extracted from the model and y is a label.

Example: BERT representation at some layer k

Basic assumption: The pro

necessary information is a

be can only .

earn the task well if the

ready encoc

ed in the representation.



Simple probing tasks
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Given a word, what is its part-of-speech (POS) tag? Given a word, what is the position of its syntactic head?

Given a word, is its POS tag the most frequent tag? Given two words, is one the syntactic head of the other?

Kunz and Kuhlmann (2020): Kunz and Kuhlmann (2022)



http://10.18653/v1/2020.coling-main.450
https://aclanthology.org/2022.coling-1.413

The pipeline hypothesis
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Tenney et al. (2019)



https://www.aclweb.org/anthology/P19-1452/

Methodological questions

»  What accuracy do we take as sufficient evidence to conclude that
a model has ‘learned a task’¢ What are suitable baselines?

«  When a model ‘learns a task, does that really mean that it

encodes linguistic information?

»  What is a suitable learning paradigm for asking these questions?

What are suitable metrics?

Kunz and Kuhlmann (2020): Kunz and Kuhlmann (2021): Kunz and Kuhlmann (2022)



http://10.18653/v1/2020.coling-main.450
http://dx.doi.org/10.18653/v1/2021.blackboxnlp-1.2
https://aclanthology.org/2022.coling-1.413

BERT is very good at predicting neighbouring words
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The probe is trained to predict the identity of the word at position + k.

Vocabulary size = 8,282



A null hypothesis for probing experiments

The word-level representations learned by BERT contain precise
information about the exact linear neighbourhood of the word.

Because of this, we argue that any study claiming that a model
encodes linguistic structure should be able to reject the ...

Context-only Hypothesis: The only information that the

classifier probe uses to learn the diagnostic task is information

about the identities of the neighbouring words of the target word.



Methodological questions

« What accuracy do we take as sufficient evidence to conclude that
a model has ‘learned a task’? What are suitable baselines?

«  When a model ‘learns a task, does that really mean that it

encodes linguistic information?

»  What is a suitable learning paradigm for asking these questions?

What are suitable metrics?

Kunz and Kuhlmann (2020): Kunz and Kuhlmann (2021): Kunz and Kuhlmann (2022)



http://10.18653/v1/2020.coling-main.450
http://dx.doi.org/10.18653/v1/2021.blackboxnlp-1.2
https://aclanthology.org/2022.coling-1.413

Insights from explanations



Asking language models to explain their predictions

Premise: Human explanation:

A woman in a teal apron A restaurant is not a park.
prepares a meal at a

restaurant.

Generated explanation:

The woman cannot be
Hypothesis: walking and preparing a meal
A woman is walking in a park. at the same time.

Label:

contradiction

Example from e-SNLI; Camburu et al. (2018)



https://proceedings.neurips.cc/paper/2018/file/4c7a167bb329bd92580a99ce422d6fa6-Paper.pdf

Evaluation of free-form explanations

How similar are generated explanations to human explanations?

o surface-level similarity (BLEU, ROUGE, BERTScore)

» similarity to human reasoning

How faithful are generated explanations to model behaviour?

- high feature agreement between labels and explanations

» correlation between noise robustness of labels, explanations

Papineni et al. (2002); Lin (2004); Zhang et al. (2020); Hase et al. (2020); Wiegreffe et al. (2021)



https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/W04-1013
https://openreview.net/forum?id=SkeHuCVFDr
https://doi.org/10.18653/v1/2020.findings-emnlp.390
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper-round1.pdf

Rationale-augmented model architectures
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output

Wieqreffe et al. (2021)


https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/698d51a19d8a121ce581499d7b701668-Paper-round1.pdf

Rationale-enriched pipelines

pro: easier to study than self-rationalizing models; higher
performance than the R — O component of pipeline models

con: not inherently faithful, as a causal path from input
to output remains open

Rajani et al. (2019)



http://dx.doi.org/10.18653/v1/P19-1487

Models

» Generator: GPT-2 fine-tuned on the task-specific data set.
GPT-ST: language modelling, GPT-MT: + label prediction

Statement: Premise Statement: Hypothesis Explanation:

» Classifier: BERT-base fine-tuned on the task-specific data set.
Six-diftferent setups depending on the type of explanations.

Premise [SEP] Hypothesis [SEP] Explanation [SEP]

Kunz et al. (2022, forthcoming)



Experimental setups

Trained with Tested with

1 None — —

2 Gold Gold explanations Gold explanations
3 ST -t Gold explanations GPT-ST

4 ST +ft GPT-ST GPT-ST

5 MT -t Gold explanations GPT-MT

6 MT +ft GPT-MT GPT-MT



Human evaluation

To assess qualitative properties of the
generated explanations, we conduct a

human evaluation over 200 samples.

Each sample is rated yes/no by three

persons familiar with the task.

We report the average score across
annotators and Krippendorft's .

If you disagree with the label or find the example
to be non-sense: Flag the example with N/A.

Step 1: Look only at e internally:

* Is e a well-formed sentence? (e is grammat-

ical and structurally sensible.)

* Is the content of e factually correct? (e it-

self 1s a true statement about the real world.
e 1s factually and logically correct.)

Step 2: Look at e and the label:

* Does e support the label? (Looking at e

alone, it 1s reasonable that the label 1s cor-
rect.)

Step 3: Use all available context:

* Does e provide a valid reasoning path for

the label? (e convincingly explains how to
get from the context to the label.)

e Does e add new information? (Rather than

re-combining information from the context,
e comes up with new information.)




Main findings

o Surface similarity, semantic similarity and human ratings do not

correlate well with classification accuracy.

» Fine-tuning on generated explanations is crucial for achieving

high classification accuracy.

» Existing data sets differ greatly with respect to the quality and

uniformity of explanations.

Kunz et al. (2022, forthcoming)



Surface similarity and semantic similarity

ECQA 71,946 4,436 11,033

e-SNLI 9,398 9,346 14,935

Vocabulary size for generated explanations
and gold-standard explanations.

For e-SNLI, explanations generated by ST and MT
are similar. Differences are larger for ECQA.

ECQA 0.311 0.250

e-SNLI 0.399 0.401

Semantic similarity as measured
by BERTScores (F1)

We see the same trends as in the
results about surface similarity.



Classification results

Data set None ST —ft ST +ft MT —ft MT +ft

ECQA 0.378 0.906 0.514 0.631 0.439 0.634

e-SNLI 0.898 0.980 0.836 0.861 0.836 0.861

Classification accuracy measured in terms of macro-averaged F1 scores

Using fine-tuned explanations yields higher scores. ST and MT show similar performance on both data sets.



Results of the human evaluation

Well-formed Support Correctness Validity Novelty

ECQA gold 0.603 (+0.22) guPesS . At A= ‘ 0.173 (+0.20)
ECQA GPT-ST 0.573 (40.25) I 0.513 (4+0.45) 0.443 (+0.19) 0.285 (+0.48) b 0.126 (+0.28)
ECQA GPT-MT  0.607 (+0.32) & 0.320 (+0.43) 0.333 (+0.15) 0.107 (4+0.43) i 0.211 (+40.23)

e-SNLI gold 0.833 (4+0.04) guis® 0,06 . .06 0.052 (—0.02)
e-SNLI GPT-ST  0.868 (+0.10) = 0.807 (+0.57) 0.670 (4-0.65) = 0.018 (+0.26)
e-SNLI GPT-MT  0.830 (+0.24) & 0.813 (40.56) 0.813 (4-0.56) 0.688 (4-0.54) & 0.012 (—0.01)

Table 6: Human evaluation: average share of yes answers across all samples that were not flagged as invalid. The
numbers in parentheses show Krippendorf’s o (n = 3, interval from —1 to +1) for inter-rater agreement.

For ECQA, annotators have a preference for ST. For e-SNLI, there is a slight preference for MT.



Results of the human evaluation

Well-formed Support Correctness Validity Novelty
ECQA gold 0.603 (+0.22) 0.682 (40.13) 0.593 (—=0.03) 0.490 (4-0.18)
ECQA GPT-ST 0.573 (+0.25) 0.513 (40.45) 0.443 (4+0.19) 0.285 (40.48) I 0.126 (+0.28)
ECQA GPT-MT  0.607 (+0.32) 0.320 (+0.43) 0.333 (+0.15) 0.107 (40.43) & 0.211 (4-0.23)
e-SNLI gold 0.833 (+0.04) 0.873 (+0.06) 0.860 (+0.08) 0.772 (—=0.06) 0.052 (—0.02)
e-SNLI GPT-ST  0.868 (4-0.10)  0.807 (4-0.57) 0.755 (4+0.73) 0.670 (+0.65) 0.018 (+0.26)
e-SNLI GPT-MT  0.830 (4-0.24) 0.813 (40.56) 0.813 (+0.56) 0.688 (+0.54) 0.012 (—0.01)

Table 6: Human evaluation: average share of yes answers across all samples that were not flagged as invalid. The
numbers in parentheses show Krippendorf’s o (n = 3, interval from —1 to +1) for inter-rater agreement.

On ECQA, MT adds more novel information. (Most of it is factually incorrect.)



Hallucination may be useful for prediction

Question: ST:

The archaeologist was Painful memories
seeing artifacts that he knew is not a feeling.
were fake, how did he feel?

MT:

A person who is in fear of
being embarrassed is called
a bad person.

Target answer:
Painful memories




Results of the human evaluation

Well-formed Support Correctness Validit Novelt

ECQA gold 0.603 (4+0.22) 0.682 (4+0.13) 0.593 (—0.03) = 0.490 (+0.18) f| 0.173 (+0.20)
ECQA GPT-ST 0.573 (4#0.25) 0.513 (4+0.45) 0.443 (+0.19) = 0.285 (+0.48) f| 0.126 (+0.28)
ECQA GPT-MT  0.607 (+0.32) 0.320 (+0.43) 0.333 (+0.15) i 0.107 (4+0.43) == 0.211 (+4-0.23)

e-SNLI gold 0.833 (+0.04) 0.873 (+0.06) 0.860 (+0.08) 0.772(—0.06) = 0.052 (—0.02)
e-SNLI GPT-ST  0.868 (+0.10) 0.807 (40.57) 0.755 (40.73) 0.670 (40.65) I 0.018 (+0.26)
e-SNLI GPT-MT  0.830 (+0.24) 0.813 (40.56) 0.813 (4-0.56) 0.688 (4-0.54) I 0.012 (—0.01)

Table 6: Human evaluation: average share of yes answers across all samples that were not flagged as invalid. The
numbers in parentheses show Krippendorf’s o (n = 3, interval from —1 to +1) for inter-rater agreement.

Overall, scores and inter-rater agreement are low, even for gold explanations.



Main findings

o Surface similarity, semantic similarity and human ratings do not

correlate well with classification accuracy.

» Fine-tuning on generated explanations is crucial for achieving

high classification accuracy.

» Existing data sets differ greatly with respect to the quality and

uniformity of explanations.

Kunz et al. (2022, forthcoming)



Summary



Main conclusions

» Large language models can produce impressive results, but
knowing exactly what they have learned is hard.

» Existing methods are often inconclusive and counter-intuitive.

There is no comprehensive, well-understood methodology.

but several interesting ideas, e.g. Voita and Titov (2020)

»  We need to get better at clearly formulating the potential and the

limitations of different evaluation methods.


http://dx.doi.org/10.18653/v1/2020.emnlp-main.14
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